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BOND ALI’ERNATION IN ‘IIfLINFINITE POLYENE: EFFECT OF

LONG RANGE COULOtlB INTERACTIONS

S. Mazumdar and D. K. Campbell
Center for Nonlinear Studies
Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

We investigate the effects of long-range Coulomb interactions on

bond and site dimerizations in a one-dimensional half-filled band. It is

shown that the ground state broken synmnetry is determined by two sharp

inequalities involving the Coulomb parameters. Broken synunetry with

periodicity 2$ is guaranteed only if the first inequality (downward

convexity of the intersite potential) is obeyed, while the second

inequality gives the phase boundary between the bond-dimerized and site-

dimerized phases. Application of ?.heseinequalities to the Pariser-

Parr-Pople model for linear polyenes shows that the infinite polyene

has ●nhanced bond alternation for both Ohno and ?lataga-Nishimoto para-

metrization of the intersite Coulomb terms. The possible role of

distant neighbor interactions in photogrneration expcrimentn is diucuss~d.



1. Introduction

Theoretical modelling of pulyacetylene, and by implication, of

related n-conjugated polymers, has recently seen both ●normous advances

1
and cont~nuing controversies. A central issue in these controversies

is the relative importance of direct Coulomb interactions between elec-

trons vis-a-vis the electron-intersite phonon coupling that leads to ~.he

observed bond-alternation in polyacetylene. Several recent experiments

have emphasized the strong role of Coulomb interactions,
2-4

and indeed,

even suggest that the optical gap in the pristine polymer may be

dominated by electron-electron interactions,
2,5

Since the original

thesry of bond-alternation in polyacetylene is based on the one-electron

Peierls model, this experimental information has led t~ considerable

theoretical effort to determine tht=ground state broken symmetry in a

cne-dimensional half-filled band with direct interactions among elec-

trons .
1

An additional motivation for such studies is that similar

investigation can also lead to a better understanding of the various

phase-transitions that occur in quasi-one-dimensional charge-trnnsfer

6
solids as well a~ the quasi-two-dimcnsionn I Fh=chgaard salts

7 with ~a,,(,

fillings other than half.

Despite the inten~r rccrnt efforts, dr!initive results hnve hrcll

obtained only for ehort-lange electron-electron intcrnction~
8-12

——--- (lypi-

cally on-nitc and neareNl neighbor replll~ion). in contradiction 10

earlier theoretical rrsult~, both rec~nt approximate
11,12

and numvri~nl

rtudi#-’O agr~e that short-rarlRr Couloml) int~rnctio:ln can enhan(”r

(up to rertnin maximum valuen) thr bond-alternation relative to thnt

obtained in the uncorr~lat~d limit, In parti(.ular, with ju~t allOr)-

nit.relectron r~pulaion IIand a nearrnt nrighhor rrplllnlonV
1’

It IN
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now known that for VI = O, U enhances bond alternation up to U - 4to,

while for V > 0, enhanced bond alternation occurs for V~ f #u. Although
1

these short range results are significant, the importance of deter-

❑ining the effects of long-range Coulomb interactions cannot be over-

estimated. Firstly, the peculiar geometry of n-conjugated polymers

(bond angle of 120° around each carbon atom) and the short C-C bond

lengths (-1.35 A and -1.45 A) inply that the Coulomb interactions may

decay quite slowly. Indeed, the various Pariser-Parr-Pople (PPP)

13
parametrization show exactly such slow de~ay, and even fifth- or

sixth-neighbor interactions are comparable to or only slightly smaller

than the nearest neighbor transfer integral. Secondly, existing

theoretical results already indicate that the use of effectiv~ short-

range interactions to approximate long range forces does not yield

the correct ground state broken synunetry.
8,9

Thirdly, the present

14-16
approximate methods for low-range interactions ai-efor the PPP—

model only, with qecific parameters thought to ‘~eapplicable to the—.—-

gas phase of linear polyenes. Even with tnesc specific parameters, the

approximate methods predict very contradictory results, and it is

therefore important to have accurate benchmark results a8ainst which

the approximate methods can br tested. Extrapolations based on numericol

!7
calculations on ilnite chains cannot be definitive, sinpe by including

more di~tant Coulomb interactions in laruer systems these talc-+lations

effectively d~al with different Hamiltonians for finite oyatems wjth.-....-..-—

different sizrs. purthermor~, ouch calculation cannot yield a general

nolution, since ●ach change of paramrtrrs requires ●n entirely new net

14-17
of calrulation~. Finally, all the ●bove calculations ● ssume ●t the

outset broken oymmwtrien with a periodicity 2kF = ~/& (a = lattice



spacing) and this is not necessarily correct. Since no simple band

picture applies at moderate to strong electron correlations, and there

is no well defined ~ (Fermi wave vector), why should Z% broken

symetry occur at all?

In the present paper, we solve the problem of the ground state

broken symmetry in a one-dimensional half-filled band with arbitrarily

long-range Coulomb interactions. A brief presentation has been made

18
earlier. Unlike the previous approaches,

14-17
we impose no

restriction on either the magnitudes or the spatial range of Coulomb

interactions, except that these are repulsive and there is a continuous

decay. We cover a complete class of models that includes both those.—.

favored by chemists (e.g., PPP) and those favored by physicists (SSH

and Peierls-extended Hubbard). We discuss a mech~nism for the 2kF

broken symmetries for arbitrary electron correlations and derive a sharp

inequality that provides a sufficient condition for 2k periodicity to
F

occur. We further derive a second inequality that then gives the phase-

boundary between the 2kF bond order wave (BOW) which favors bond alter-

nation and the 2k charge density wave (CDW) which favors equal bond
F

lengths. Non-2kF periodicity may occur if the first of these inequali-

t~e+sis violated. Finally, we apply our results to thr pl’pmod~!, sho~”

that none of thr approximate methods yield complete refiults,and rrsolvr

the controversies among existing predictions. The implir~t ions !or

polyacetyleme are then discussed.
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II. Theoretical Models and Broken Synnnetries

The particular class of models of interest here are described by

the Hamiltonian

H +H
= ‘l-e e-e

(la)

H = z [to-a(yi-yi+l ] + @n.q)l[c~~ci+l,~+c~+],uciu i 1 il-e
(lb)

i,u

H = UZnitni4 + Z V.n.n.
e-e

i i}j
J 1 l+j

(lC)

Here Iil-econtains all the one-electron terms including the intersite

‘Yi-Yi+~ ) and intrasite (qi) electron-phonon couplings. The intrasite

electron-phonon coupling is not relevant for systems like polyacetylene,

but is relevant for applications to molecular solids. We have not

included the phonon elastic energy, as we are interested only in the

unconditional broken symmetries, i.e. , those that occur in the limit—.

of O’,p+ o+. The many-electron term H includes both the on-site
e-e

and intersite Coulomb repulsion parameters U and V,, with ni = Z nia,
J o

where u = *I refer to up (?) and down (+) spins of electrons. The only

restriction we have on the Coulomb terms is the condition of continuous

decay, viz., U>VI >V2> -’+O. Not-it-rthat the PPP Hamiltonian is

usually written slightly differently from Eq. l(c). This difference is

illusorv , 3G one can easily show that the present form shifts all

r~ergien by a constant.

11 is useful at this stage to describe the various broken synmne-

tries one can have for the Hamiltonian (1) in the half-filled band.

Brok?n symnetrie~ ha~~ng periodicity 2kF and familiar from the pur~

electron-phonon (Peirrln) mod~ls include:

‘4
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.

(i) the 2% bond order wave (BOW) with a modulation of the bond order

that the BOW is also referred to as the intersite charge density wave),

(ii) the 2% intrasite charge density wave (CDW), with a periodic modu-

lation of the site charge density, and (iii) the 2% spin density wave

(SDW) with periodic modulation of the spin density. The BOW and the CDW

correspond to broken discrete symmetries and therefore can lead to

long-range order , whereas the SDW involves a broken continuous symmetry

(spin orientation) and therefore has only algebraic, rather than long-

8,9
raage order. Importantly, from studies of both the Hamiltonian (1)

and of the spin-Peierls system 19 (which is theU +@limit of (l)), it

is known that the 2k SDW coexists with the 2k BOW even up to U + CO.
F F

Thus here we can focus solely on the competition between the BOW and

CL)W. Finally, although it is not familiar f~om thr pure electron-phonon.—

system for certain ranges of the nonzero Coulomb interactions we can

have a non-2kF CDW; significantly this cen only occur if V2 (or other

higher V, ‘s) # O and thus is missed illsimple extended Peierls-Hubbard
J

models,

Our results can he summarized briefly. We show that a 2kF

periodicity itiui]tivl~ditii~ntilIJtllyif the illlei-~itvpart uf the pvte”[llinl

is downward convex, i.e.,

v j+] ‘“j-l ‘ ‘Vj {:?)

while if’Eq. (2) is il~valid, n non-2k~ CIIWmay ocrur. If Iiq. (2) holdl+,

then the dorninnting ground Htatc btokrn synmnetry {n R~ven by a second

inequality,



< *U + N2j~ ‘Zj+] >
j

(3)

If the left hand side of (3) is smaller a 2~ BOW results, while for a

smaller right.hand side the ground state has a 2$ CDW. Near the

equality the BOW and the CDW can coexist.

II~c The Real

Since the

strong Coulomb

Space Mechanism of Broken Synnnetry

momentum space (band) picture is lost for moderate to

correlations, it is most natural to seek a physical

understanding of the mechanism of broken symmetry in correlated systems

within a real space picture. The basic tenents of the real space

picture9 are:

(i) All reai space many-electron configurations are diagonal or off-

diagonal with respect to the symmetry operator that is lost when the

symmetry is broken. Broken symmetry implies unequal contributions to

the ground state wavefunction by configurations that are off-diagonal

with respect to the particular symmetry operator, but are otherwise

equivalent.

In the present case, for the 2kF = n/a peri.odicity, all configurat-

ions can be classified as L (left.),R (right) or S (symmetric), where L

and R nre nff-diagonal with respect t~ reflection between [through) the

Rites, corresponding to the 2kF CDW (BOW).

(ii) The off-diagonal configurations can be further claasifled

according to the extent to which they favor broken nynmnetry.—..— . Thus for

periodirity R/a, 1,]favor? ieft-pha8r momt strongly, L2 @lightly leas

strongly and so on, Similarly, we can have R], R2,.,. etc. Only L]

and R, are unique, and we will ref~i to them as “extremeft configurations.
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.

(iii) All real-space configurations are diagonal inHe-e but off-

diagonal with respect to Hi-e. The two extreme configurations can be

reached, one from the other, by repeated applications of Hi-e, and

broken synmnetry is due to a barrier to perfect resonance (in the chemical

sense) between LI and R1. The overall barrier to resonance can be

determined by inspection of only the extreme configurations, since all

intermediate configurations lie along the paths (generated by Hi-e)

connecting them. For He-e = O resonance is imperfect in infinite

systems (even for O+ couplings) because of the infinite lengths of the

paths. He-e # O enhances (decreases) the barrier to resonance depending

on whether matrix elements of He-e of intermediate configurations along

all paths are higher (lower) in energy than those of the extreme pair.

These observations establish our first result: electron-electron inter-

actions will enhance a given broken symmetry if the appropriate extreme

configurations form the ground state of He-e (i.e., the ground state of

H at ‘l-e
=0). If any other configurations have lower energy at Hi-e =

O, the broken symmetry (for some coupling strength) will be destroyed.

A simple extension of this argumeut is as follows: if the ground state

of He-e is neither of the extreme configurations that favor the 2~ CDW

or 2% BOW, possibility of a non-2kF CDW arises.

Simple inspection shows that the extreme configurations for the

Z% CDW are

~cl.)w= + + + +
1 cl~~l+~:3tc3*””“lo>

and R~Dw , which has sites 2, 4,.. . doubly occupied. For the 2kF BOW,

it has beer shown previously that



~BOW
1

= (c;tc;4-c;Jc;t) (c;tc;4-c;4c;+) ““”]0>

with R~ having perfect spin pairings between sites 2 and 3, 4 and

5,... etc. Since for Hi-e = O energies depend on site occupancies only,

we arrive at the conclusion that if che ground state of He-e is the

configuration ●*02020-”= (or equally, ‘“”02020*0) then for H ~-e # O an

enhaaced 2% CDW is guaranteed, while if the ground state is ●*-1111-”*

anenhanced 2~BOWis ensured, where thenumbers0, land 2 denote site

occupancies. One final point should be noted here. From the syuunetry

properties of the extreme 2% CDW or 2% BOW configurations it is

obvious that an enhanced 2% CDW will destroy a 2% BOW and vice versa.

This result was obtained earlier in the absence of correlations (U,V. =
J

O) by Kivelson
20(a)

and S<O(b) , but as we see here, it remains valid

for arbitrary U and Vj (although the exact width of the coexistence

region may depend on the magnitude and range of U and V.).
J

IV. The Ground State of He-e: An Exact Theorem

In this tiectionwe state and present the outlines of the proof of

18
an exact theorem: if inequality (2) holds, so that the potential is

downward convex, then the ground state of He-e is the configuration

““”2020””” if$U+1V2j<ZV
j 2j+l’

whereas it is ‘**1111*** if

j

$U + ‘Vz j > ‘vzj+~m

j j

The detailed nature of this proof is to lengthy to present here,

nnd we provid~ only a sketch to motivate its validity. We classify

confi~uration~ accordin~ to the number N~ of double occupancies, ●nd

write E(N2) us the energy of the particular configuration which has the
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lowest energy within this class. If inequality (2) is valid, it can be

shown exactly that this particular configuration is unique and known,

while if ineq,lality (2) is not true one cannot determine the lowest

energy configuration. We extend a ❑ethod originally due to Hubbard for

u= ~ and arbitrary band killings to the case of finite 11and the half-

filled band (and thus an equal number of 2’s and O’s) to prove that

within each class of configurations with N
2

configuration with the lowest energy is the

are adjacent and alternating. E(N2) is now

O ~ N2 ~N/4,

double occupancies, the

one in which all 2’s and O’s

known exactly. For

2N2
N1—-

E(N2) = N2U + ~ [N+(-l)j(2N2-j)]V. +N ~ Vj + (~)v
2 N/2

(4)
j=l J j=2N2+l

while for N/h < N < N/2,
–2–

N-2N2

E(N2) = N2U + z [N+(-l)J(2N2-j)]Vj
j=]

(5)

N—-
21

+ ~ [N+(--l)J(4NZN) ]V. +~VN,2[N+(-l)N/2 (4N~N)]
j=N-2N2+l J

In both (4) and (5) the last terms , which are irrelevant for infin:tr

systems, are indicated in anticipation of our later study of finite

rings. Note that (4) and (5) limit correctly to the

N(V1+\2+V3+ ●*”) andE(N/2) = $NU + 2N(V2+V4+V6+. ..),

Simple algebraic manipulations now tihowthat if the ~

value~ E(0) =

respectively.

efthand side in
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Eq. (3) is smaller so that E(0) < E(N/2), then E(0) < E(N2) for all N2

provided Eq. (2) is true. Similarly, if the right hand side in (3) is

smaller, then E(N/2) < E(N2) follows if Eq. (2) is true. This proves

our theorem regarding the exact ground state at H
l-e

= o.

v. Numerical Results

The results obtained in sections 111 and IV are based on intuitive

physiccl arguments and an exact theorem valid in the strong coupling

limit. To confirm the heuristic arguments of section !11 we heve per-

formed exact numerical calculations on a ten-site ring. We present a

few representative results here to show that the numerical results obey

our theoretical predictions completely. To demonstrate an enhanced 2
%

BOW, we choose to study
21

A(AE) s AE(U,Vj) - AE(0) (6)

where LNZ(U,Vj) ~ E(U,Vj,ti i+l = to(l+(-l)i6)) - E(lJ,Vj,ti i+] = to)
P )

and E(U,Vj,ti i+l) is the total electroni~ energy. Thus A(AE) > 0
9

implies that the Coulomb interactions enhance the 2$ Bow. To investi-

gate the 2kF CDW, we evaluate the charge de~~sity structure factor,

S(q) = S = N-l I <n.n. >e
iqla

q j,JZ
J J+~

(7)

and ctudy Mn z S~,a(u; vj) - Sn,a (0), noting that AS > 0 implies that
n

the Coulomb interactions enhance the 2kf CDW.

The inequalities (2) and (3) are independent of the cutoff in V.
J

and N, with the only finite nize effect being that the last term on the

left hand side of Eq. (3) must have a coefficient of #. Altogether we
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have studied more than fifty

(the maximum physical Vj for

tlons In each case; we focus

different comb~nations of U, ‘Jl,..., V5

the N = 10 systenl)and verified our predic-

here on three illustrative examples. First,

we take U < 2Vl, and V. = O for j > 3. For V2 = O we have an enhanced
J —

2% CDW according to Eqs. (2) and (3), while for V; ~ VI - *U we predict

an enhanced BOW. We have plotted both A(AE) and Nn for this case -- we

take U =4,V1= 3 (where t = 1), so that V; % 1 -- in Fig, 1, and we
o

see that numerical results agree with this completely. Second, wi:b,

v. = 0 for j > 4, we choose values of U, V
J — 1’

and V such that we have an
2

enhanced 2k,7BOW initially. We now increase V3 from O ~ud expect tl-u,tforL
V;:+IJ+V2.V1, the system transforms to an enhanced 2i”cCDW. Again,

.

the results in Fig. 2 reflect this behavior. Inequalities (2) and (3)

are based on strong coupling (to+O) results, and for finite valu:s of

to the region of coexistence between the 2% BOW and CDW c~n be rela-

tively broad. For example in Figs. 1 and 2, ~he coexistence :egion is

roughly 0.5 to. CIUr inequalities will alW~YS CCLr(?CtlY predict the

dominant broken syusnetr!’;they do not, however, preclude the coexistence

of a weaker competing blohen svmmetrv, Finally, if we take U < 2V1,

v. = O for j > 3 and increase V2 until V2
J

> iV1, we violate the downward

convexity condition (2) and expect a non-2kf CDW. In Fig. 3 we have

plotted S(q) from Eq. (9) for such a case snd show t’,latit indeed peaks

at q # Z% =n/a. We have delibera~ely chosen valuefi of U, Vj etc. CIOSC

to the PPP values to ciemontitratethe validity of our ~esults for realis-

tic parameters. Inequalities (2) and (3), however, are valid for thr

complete range of pnramcter~ , and results for much larger parameter~

(with U = 10) have been pre~entcd earlier.
18
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VI. Conclusions

Application of our results to PPP-type models is straightforward,

and one important consequence is that both the PPP-Ohno and PPP-Plataga

Nishimoto Hamiltonians
13

yield a ground state with enhanced bond-

alternation, in contradiction to previous predictions based on a~proxi-

mate theories. Whether the PPP models are applicable to polyacet.ylene

is another matter altogether. However, several important points should

be made.

First, as has been discussed in detail by Baeriswyl,
22

it would

seem natural that the value of the spring constant K in polyacetylene

should be similar to benzene and not to ethane. Thus the dimensionless

electron-phonon coupling constant a2/Kto is substantially smaller than

that used in the noninteracting models, based on the K for ethane.

Similar ideas htivepreviously been emphasized by Misurkin and

Ovchinnikov
23 24

and KakiLani, while the magnitude of the electron-phonon

25
coupling parameter used by I’ietronero and Strassler fcr calculations

22
on graphite is ‘Jery close to the “unbiased” value obkained by Baeriwyl,

If one &dopts thi~ perspective, then the observed bond-alternation in—.

trans-polyacetylcne must represent enhanced dimerization due to electron

correlation.

Second, since Lhe appliratinn of the unrestricted Hartree Fock (UHF)

nieLhod to the PPP model of (CH)~5 does not yield the correct ground state

broken sYnuneLry, the results obta~ned for optical and noliton utates

u~ing UHF should be reexamined, In particular, UHF techniques may fail

to capt.ur(possible excitonir states.
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Third, important observable are affected in different ways by

Coulomb interactions. The optical gap and spin density, for example,

can be ar~ued to vary aa U-VI to leading order and are only weakly

dependent on more distant interactions. Thus it is possible to deter-

mine ●ffective short range

quantitatively, For other

true Bolutions for excited

parameters to describe these observable

observable, however, one ❑ay well require

states in the presence of long-range inter-

actions. In photogeneration, for ~xample, the physical separation of

the electron-hole psir into charged soliton-antisoliton is strongly

dependen~ on the relative magnitudes of short-range and lon~-range

Coulomb interactions. Indeed, within the simple Peierls-Hubbard model

(Vj = O) chprge-separation is expected for U > 0, but even a small Vl

can lead to exciton formation, while inclusion of a second-neighbor

interaction V
2

reduces the barrier to charge-separation somewhat. An

additional theoretical problem arises from the limitation of exact

numerical calculations to small systems.
5,17

in these systems there is

rather strong soliton-antisoliton overlap in both closed rings and open

chains (ns well as strong end effects in the open chain~) that would

prevent charge separation. Quantum Monte Carlo methods9’10 cannoL at

present examine the optical state, while ns we have indicated here,

approximation methods whirh have examined the effects of long range

interactions are of doubtful validity ●ven for the ground ~Late. A

major ●fforL should be made to S.OIVPthr excited state problem in

correlated states; in this regnrd, recenl renormalization group

26
approached appearing prum~sln~,
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FIGURE CAPTIONS

Fig. 1. A(AE) (solid line, zero indicated on left axia) and ASn (dashed

line, zero indicated on right axis) versus V2 for U = 4 and

‘1
= 3, in units of t Equation (3) predicts that beyond

0“

‘2
= 1 (indicated

disappear and the

by an arrow on the graph) the CDW should

BOW should appear. Due to the non-zero

21
interaite electron-phonon coupling the BOW appears slightly

before V; and in the region 0.5 ~ V2 ~ 1.1, both the BOW and

CIW’coexit3t, Note that when the plotted quantities fall below

zero, there is no tendency toward the corresponding broken

symmetry.

Fig. 2. A(AE) (solid line, zero indicated on left axia) and ASn

(dashed line, zero indicnted on right axis) versus V3 for

U= 5, Vl=4, andV2=l.8. The arrow indicates the critical

V3 (0.3) beyond which the CDW should appear and the BOW dis-

appear, The persistence of the BOW beyond V: is in part.due

to the non-zero -- cl~ctron-phonon coupling used in meaauring

A(AE) .

Ffg. 3, The strucLurr facLor S(q) versus qa/n for U = 4, VI = 2.5,

and V
2
= 1.5 and 2,0, S(q) pcaka at q < 2kF = n/a for

V2 > v; = 1.25 and sll~ftn to smaller q an V2 increaaea.
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